

Scientific (Exponential) Notation

The numbers used in chemistry are often either extremely large or extremely small. Such numbers are conveniently expressed in the form of scientific notation.

$$1 \le N < 10$$
 \longrightarrow $N \times 10^n$ \longleftarrow n is an exponent of 10

The Avogadro number is written as 6.022×10^{23} .

Positive Exponents: Each time the decimal place is moved once place to the **left**, the exponent is **increased** by one.

$$5237.3 \times 10^{0} = 523.73 \times 10^{1}$$

 $523.73 \times 10^{1} = 52.373 \times 10^{2}$
 $52.373 \times 10^{2} = 5.2373 \times 10^{3}$
 $= 5.2373 \times 10 \times 10 \times 10$

Negative Exponents: Each time the decimal place is moved once place to the <u>right</u>, the exponent is <u>decreased</u> by one.

$$0.00386 \times 10^{0} = 0.0386 \times 10^{-1}$$

$$0.0386 \times 10^{-1} = 0.386 \times 10^{-2}$$

$$0.386 \times 10^{-2} = 3.86 \times 10^{-3}$$

$$= \frac{3.86}{10 \times 10 \times 10}$$

Operations with Scientific Notation

Addition and Subtraction: In order to add or subtract numbers expressed in scientific notation, *the powers of 10 must be the same*.

Not equal
$$\longrightarrow$$
 Equal \longrightarrow Equal \longrightarrow Equal \longrightarrow Equal \longrightarrow \bigcirc The decimal is moved to the left to increase the exponent.

Multiplication: When numbers in scientific notation are multiplied, <u>only the number is multiplied</u>. The exponents are **added**.

$$(5.4 \times 10^{2})(2.1 \times 10^{3}) = (5.4)(2.1) \times 10^{2+3} = 11 \times 10^{5} = 1.1 \times 10^{6}$$

Division: When numbers in scientific notation are divided, only the number is divided. The exponents are *subtracted*.

$$\frac{3.2 \times 10^{\frac{1}{5}}}{6.5 \times 10^{\frac{2}{5}}} = \frac{3.2}{6.5} \times 10^{\frac{1}{5}} = 0.49 \times 10^{2} = 4.9 \times 10^{2}$$

Practice Problems

1. Convert the following numbers into scientific notation.

a) 923 _____

- b) 0.00425 _____
- c) 4523000 _____
- d) 0.94300 _____
- e) 92.03 _____
- f) 7.80 _____

2. Convert the following numbers into standard notation.

- a) 3.92400 x 10⁵ _____
- b) 9.2 x 10⁶
- c) 4.391 x 10⁻³
- d) 6.825 x 10⁻⁴
- e) 8.36 x 10¹
- f) 2.46 x 10⁻⁵

3. Perform the following operations and express the answers in scientific notation.

- a) $(1.2 \times 10^5) + (5.35 \times 10^6)$
- b) $(6.91 \times 10^{-2}) + (2.4 \times 10^{-3})$
- c) $(3.67 \times 10^2) (1.6 \times 10^1)$
- d) $(3.378 \times 10^{-3}) (4.97 \times 10^{-5})$
- e) $(5.98 \times 10^{12}) \times (2.77 \times 10^{-5})$
- f) $(6.0 \times 10^3) \times (1.5 \times 10^{-2})$
- g) $(7.8 \times 10^3) \div (1.2 \times 10^4)$
- h) $(6.48 \times 10^5) \div [(2.4 \times 10^4) (1.8 \times 10^{-2})]$

References:

Tro, Chemistry: A Molecular Approach, 2nd ed., Pearson Brown/LeMay/Bursten, Chemistry: The Central Science, 12th ed., Pearson

1. a) 9.23 × 10²; b) 4.25 × 10³; c) 4.553 × 10⁶; d) 9.4300 × 10⁷; e) 9.203 × 10¹; f) 7.80 × 10⁰
2. a) 392400; b) 9200000; c) 0.004391; d) 0.0006825; e) 83.6; f) 0.0000246
3. a) 5.47 × 10⁶; b) 7.15 × 10²; c) 3.51 × 10²; d) 3.328 × 10³; e) 1.66 × 10⁸;
(f) 9.0 × 10¹ g) 6.5 × 10⁷; h) 1.5 × 10²