Linear and Angular Quantities

To understand the relationships between linear and angular quantities, we need to know about radians:

A radian is the angle that subtends an arc length equal to the radius of the circle.

A general arc has length $\mathbf{S} = \mathbf{r} \; \boldsymbol{\theta}$ where r is the radius and $\boldsymbol{\theta}$ is the angle measured in radians

Since a circle has circumference $\pmb{C} = \pmb{2\pi r}$, this means that $\pmb{2\pi}$ radians = 360° .

Linear Quantity	Angular Quantity	Relationship*
Displacement s	Angular Displacement $oldsymbol{ heta}$	$s = r \theta$
Speed <i>v</i>	Angular Speed $oldsymbol{\omega}$	$v = r\omega$
Acceleration a	Angular acceleration $lpha$	$a=r\alpha$
Mass m	Moment of inertia <i>I</i>	

The correspondence between linear and angular quantities gives us corresponding angular kinematic equations:

$$v_f = v_i + at$$
 $\omega_f = \omega_i + \alpha t$
$$x_f = x_i + v_i t + \frac{1}{2} a t^2 \qquad \theta_f = \theta_i + \omega_i t + \frac{1}{2} \alpha t^2$$

$$v_f^2 - v_i^2 = 2a\Delta x \qquad \omega_f^2 - \omega_i^2 = 2\alpha\Delta\theta$$

 $^{^*}$ These relationships only hold if heta is measured in radians

Just as the mass of an object, m, determines its acceleration under a given force, \vec{F} , its moment of inertia, l, determines its angular acceleration under a given torque, $\vec{\tau}$.

The magnitude of the torque, τ , is defined as $\tau = RF\sin\theta$ \to where R is the displacement from the pivot point and θ is the angle between R and R.

Moment of inertia *I* is defined about a pivot point.

For a single object (as shown) ${\it I}=mR^2$

Linear Quantity	Angular Quantity	Relationship
Mass m	Moment of inertia <i>I</i>	(see above)
Force F = m a	Torque $\tau = I \alpha$	$\tau = F r \sin \theta^*$
Translational Kinetic Energy K.E. = $\frac{1}{2}mv^2$	Rotational Kinetic Energy $K.E. = \frac{1}{2}I\omega^2$	
Linear Momentum $P = mv$	Angular Momentum $L = I\omega$	

If there is no external torque on a system, then the total angular momentum is conserved (just as total linear momentum is conserved if there is no external force).

^{*} Here θ is the angle between F and r .