₩Math/ Science Center

Polynomial division:

Question: When might we want to divide one polynomial by another?

For example, dividing
$$f(x) = x^4 + 6x^3 + 11x^2 + 12x + 4$$
 by $g(x) = x^2 + 3x + 2$

Answer: One reason might be to find the roots (values of x that make f(x) = 0).

You could use a process called synthetic division to find the roots of a polynomial.

However, if you find synthetic division confusing and/or difficult to remember, then you can also use simple division.

Example: Suppose we want to find the roots of the polynomial

$$f(x) = 6x^4 + 17x^3 - 29x^2 - 2x + 8$$

The roots of this polynomial are given by $\pm \frac{P}{Q}$, where P is a factor of 8 and Q is a factor of 6

The factors of 8 are: 1 x 8, 2 x 4

The factors of 6 are: 1 x 6, 2 x 3

So the possible values of
$$\frac{P}{Q}$$
 are $\pm 8, \pm 4, \pm 2, \pm 1, \pm \frac{1}{2}, \pm \frac{8}{3}, \pm \frac{4}{3}, \pm \frac{2}{3}, \pm \frac{1}{3}, \pm \frac{1}{6}$

To see if x = 1 is a root, then we need to divide f(x) by (x - 1):

Start by writing the problem like one in long division:
$$x - 1$$
 $6x^4 + 17x^3 - 29x^2 - 2x + 8$

Divide $6x^4$ by x to get $6x^3$. Write that above the horizontal line:

$$x-1 \overline{)6x^4 + 17x^3 - 29x^2 - 2x + 8}$$

Now multiply (x - 1) by $6x^3$, write below f(x), and subtract:

ect:

$$x - 1$$

$$6x^{4} + 17x^{3} - 29x^{2} - 2x + 8$$

$$6x^{4} - 6x^{3}$$

$$23x^{3} - 29x^{2}$$

After subtracting, bring down the next term: $-29x^2$

Now divide
$$23x^3$$
 by x to get $23x^2$ and repeat: $x-1$

 $6x^3 + 23x^2$

Repeat again, dividing $-6x^2$ by x to get -6x:

$$6x^{3} + 23x^{2} - 6x$$

$$x - 1 \overline{)6x^{4} + 17x^{3} - 29x^{2} - 2x + 8}$$

$$\underline{6x^{4} - 6x^{3}}$$

$$\underline{23x^{3} - 29x^{2}}$$

$$\underline{23x^{3} - 23x^{2}}$$

$$\underline{-6x^{2} - 2x}$$

$$\underline{-6x^{2} + 6x}$$

$$-8x + 8$$

And finally:

$$6x^{3} + 23x^{2} - 6x - 8$$

$$x - 1 \overline{)6x^{4} + 17x^{3} - 29x^{2} - 2x + 8}$$

$$\underline{6x^{4} - 6x^{3}}$$

$$\underline{23x^{3} - 29x^{2}}$$

$$\underline{23x^{3} - 23x^{2}}$$

$$\underline{-6x^{2} - 2x}$$

$$\underline{-6x^{2} + 6x}$$

$$\underline{-8x + 8}$$

$$\underline{-8x + 8}$$

So the answer is:

$$6x^4 + 17x^3 - 29x^2 - 2x + 8 = (x - 1)(6x^3 + 23x^2 - 6x - 8)$$

Exercises:

Divide the following:

1.
$$(x^3 - 1)$$
 by $(x - 1)$

2.
$$(x^3 - 4x^2 - 20x + 48)$$
 by $(x - 2)$

$$3 (v^3 + 6v^2 + 11v + 6) hy (v + 3)$$

3.
$$(x^3 + 6x^2 + 11x + 6)$$
 by $(x + 3)$ 4. $(x^4 + 8x^3 + 24x^2 + 32x + 16)$ by $(x^2 + 4x + 4)$